
Subtyping & Subclassing:
A Brief Glimpse

Additional Java Tips

Nathaniel Osgood

CMPT 858

4-5-2011

Recall: A Key Motivator for Abstraction:
Risk of Change

• Abstraction by specification helps lessen the work
required when we need to modify the program

• By choosing our abstractions carefully, we can
gracefully handle anticipated changes

– e.g. Choose abstracts that will hide the details of things
that we anticipate changing frequently

– When the changes occur, we only need to modify the
implementations of those abstractions

Recall: Defining the “Interface”
• Knowing the signature of something we are

using is necessary but grossly insufficient

– If could count only on the signature of something
remaining the same, would be in tremendous
trouble: could do something totally different

– We want some sort of way of knowing what this
thing does

– We don't want to have to look at the code

• We are seeking a form of contract

• We achieve this contact through the use of
specifications

Recall: Types of Abstraction in Java

• Functional abstraction: Action performed on data
– We use functions (in OO, methods) to provide some

functionality while hiding the implementation details

– We previously talked about this

• Interface/Class-based abstraction: State & behaviour
– We create “interfaces”/“classes” to capture behavioural

similarity between sets of objects (e.g. agents)

– The class provides a contract regarding
• Nouns & adjectives: The characteristics (properties) of the

objects, including state that changes over time

• Verbs: How the objects do things (methods) or have things
done to them

Encapsulation: Key to Abstraction by
Specification

• Separation of interface from implementation (allowing
multiple implementations to satisfy the interface)
facilitates modularity

• Specifications specify expected behavior of anything
providing the interface

• Types of benefits
– Locality: Separation of implementation: Ability to build one

piece without worrying about or modifying another
• See earlier examples

– Modifiability: Ability to change one piece of project without
breaking other code

– Some reuse opportunities: Abstract over mechanisms that
differ in their details to only use one mechanism: e.g. Shared
code using interface based polymorphism

Two Common Mechanisms for
Defining Interfaces

• Interface alone: explicit java “interface”
constructs
– Interface defines specification of contract

– Interface provides no implementation

• Interface & implementation: Classes (using java
“class” construct)
– A class packages together data & functionality

– Superclasses provide interface & implementations

– Abstract classes as mechanism to specify contract &
define some implementation, but leave much of the
implementation unspecified

• We will focus on this

What is a Class?
• A class is like a mould in which we can cast particular

objects
– From a single mould, we can create many “objects”
– These objects may have some variation, but all share certain

characteristics – such as their behaviour
• This is similar to how objects cast by a mold can differ in many

regards, but share the shape imposed by the mould

• In object oriented programming, we define a class at
“development time”, and then often create multiple
objects from it at “runtime”
– These objects will differ in lots of (parameterized) details, but

will share their fundamental behaviors
– Only the class exists at development time

• Classes define an interface, but also provide an
implementation of that interface (code and data fields
that allow them to realized the required behaviour)

Recall: A Familiar Analogy

• The distinction between model design time & model
execution time is like the distinction between

– Time of Recipe Design: Here, we’re

• Deciding what exact set of steps we’ll be following

• Picking our ingredients

• Deciding our preparation techniques

• Choosing/making our cooking utensils (e.g. a cookie cutter)

– Time of Cooking: When we actually are following the
recipe

• A given element of the recipe may be enacted many times
– One step may be repeated many times

– One cookie cutter may make many particular cookies

Cooking Analogy to an Agent Class:
A Cookie Cutter

• We only need one cookie cutter to bake many
cookies

• By carefully designing the cookie cutter, we can
shape the character of many particular cookies

• By describing an Agent class at model design time,
we are defining the cookie cutter we want to use

Familiar Classes in AnyLogic

• Main class

• Person class

• Simulation class

Work Frequently Done with Objects

• Reading “fields” (variables within the object)

• Setting fields

• Calling methods

– To compute something (a “query”)

– To perform some task (a “command”)

• Creating the objects

Distinction between Class and Object

• Sometimes we want information or actions that
only relates to the class, rather than to the
objects in the class

– Conceptually, these things relate to the mould,
rather than to the objects produced by the mould

– For example, this information may specify general
information that is true regardless of the state of an
individual object (e.g. agent)

– We will generally declare such information or
actions to be “static”

Example “Static” (Non-Object-Specific) Method

Subtyping Relationship (Informal)

• We say that type A is a subtype of type B if we
can safely substitute an A where a B was
expected (e.g. substitute in a Person argument
where an Agent was expected by the parameter)

• A subtype must be in some sense “compatible”
with its supertype
– This compatibility is not merely a matter of

signatures, but also involves behaviour

– It is not possible for a compiler to verify the
behavioural compatibility of a subtype &supertype

• If we are expecting a B, we should not be
“surprised” by the behaviour of an A

Domain-Specific Subtyping
• Frequently we will have a taxonomy of types of

objects (classes) that we wish to model

– People

– Chiropractors

– Physiotherapists

– Licensed Practical Nurses

– Registered Nurses

– Patients

– Orthopedic surgeons

– Radiologists

 We may group objects into classes, but there are commonalities among the classes as well!

Commonality Among Groups
• Frequently one set of objects (C) is just a special type of

another (D)
– All of the C’s share the general properties of the D’s, and can

be treated as such – but C’s have other, more specialized
characteristics as well

• For example,
– Radiologists & Orthopedic surgeons are both types of

doctors

– Licensed Practical Nurses andn Registered Nurses are types
of nurses

– Chiropractors, Physiotherapists, Doctors and Nurses are
types of health professionals

– All health professionals and patients are types of people, and
share the characteristics of people (e.g. susceptibility to
aging, illness and death)

Example
• “Person” interface might provide methods including

(but not limited to)
– IsInfected

– Infect

– Age

– Sex

• In addition to the above, a “HealthProfessional”
interface might provide a method “RecentPatients”
yielding patients seen by the prof. over a period of
time (e.g. the most recent year)

• The “Doctor” interface might further provide a
method ResidencyInsitution()

Health Professional Hierarchy

Person

Patient Health Professional

Doctor Nurse Chiropractor Physiotherapist

Radiologist Orthopedic Surgeon

Some Benefits of Type Hierarchies

• Polymorphism – we can pass around an object that
provides the subtype as an object that provides the
supertype. (e.g. any method expecting a person
argument can take a Doctor radiologist)

• Understanding
– Capturing specialization hierarchies

• Reuse
– Code can be written for supertypes, but reused for subtypes

• Extensibility
– Open/closed principle (ideally no need to modify code of

superclass when add a subtype)

Polymorphism

• We can pass around an object that provides the
subtype as an object that provides the supertype.

• Polymorphism enables decoupling of
– Apparent type
– Actual type

• Programming against apparent type interface
• Dispatching is against actual type

• E.g. Reference to Dictionary, but actual object is a

hash table

AnyLogic Subtyping Relationships

• AnyLogic models are built around a set of classes
with subtype relationships to each other

• The presence of these subtype relationships allows
us to pass instances (objects) of a subtype around
as if it’s an instance of the supertype

One AnyLogic Hierarchy

ActiveObject

Main Agent

Person Bird Deer

Woman Man Doe Buck

Nodes colored in blue are built in to AnyLogic. The other nodes could be generated
automatically (e.g. “Person”, “Bird”, “Deer”) or built (“Man”/”Woman”, “Buck”/”Doe”)
as part of a model

Transitions in Statecharts

Transition

TransitionRate TransitionCondition TransitionTimeout TransitionMessage

Experiment<MainClass>

ExperimentOptimization ExperimentSimulation

ExperimentParameterVariation
ExperimentCompareRuns

Other AnyLogic Hierarchies

Model Experiments

Java.util Type Hierarchies

Java.io Type Hierarchies

Subtyping AnyLogic Objects

• One of the most powerful ways of customizing
AnyLogic’s behavior is by subtyping classes in
AnyLogic that are either built-in or auto-generated

• Examples

– ResourceUnit

– Entity

• Here, instances of your class can circulate as if it’s
an instance of the original class

Capturing Hierarchies via Subtyping

• We can capture a hierarchy such as that in the
previous slide by

– Defining interfaces

• Each interface would specify the methods that are to
be supported by any object that provides (supports)
that interface

– Setting up “subclass” relationships of these
interfaces through the use of the “extends”
keyword

Scoping

• When information is placed in a certain
context (e.g. within an object, or “static”
things in a class) we have to retrieve it from
those places

Subclassing
• “Subclassing” is a special type of subtyping that also

allows the subtype to reuse (“inherit”) the
implementation of the supertype

• This means that, to achieve a small modification for
the supertype behavior, the subtype doesn’t have
to go through and re-implement everything that is
supported by the supertype

• Subclassing brings two things
– Subtyping

• Provides e.g. polymorphism

– Code reuse
• via inheritance of methods, fields

Contrasting Tradeoffs
Interfaces

• Advantages
– More flexible

• Capture non-hierarchical
relationships

• Easily added to definition of an
existing class

• Enables “mixin” like style

– Cleaner type & inheritance
hierarchy

• Disadvantages
– Cannot easily extend existing

interfaces

– No default implementations can
be provided

Class-Based Inheritance
• Advantages

– Easier extension with new
functionality

– Permits implementation reuse

• Disadvantages
– Subtype constraint (LSP) violation

• Desire to reuse code can lead to
deliberate ignoring

• Inheritance can lead to accidental
violation & violation of open-closed
principal

– Distort inheritance hierarchy
• Abstract classes pushed up
• Combinatorial explosion for dual

interfaces

– Single inheritance limits to tree
– Multiple inheritance is dangerous

• Semantically tricky
• Confusing

 (Some Items Adapted from Bloch, Effective Java, 2001, Pearson Education)

Network with Multiple Agent Classes

Realizing Multiple Agent Classes
Sharing Same Network

• Create an agent superclass

• Create multiple subclasses of that superclass

– In “Properties”

• indicate that “Extends” superclass

• Provide constructor to associate with agent population & Main
class

• For the Agent population, use a replication of 0

• Create Startup code for “Main” that adds the
various types of agents to the model

– This uses code adopted from Java code output by build

Common Problems
• References to concrete classes leads to multiple

changes for a simple conceptual change

– Can be fixed by consistent programming against
interfaces

• Claimed subtypes are not behavioural subtypes of
supertypes

– Subclassing for code reuse or mistaken notion of
specialization(“is-a”) causes flawed design, defects

We’ll comment on these

“Fraudulent Subtypes”
• When building a subtype/class hierarchy, we specify

(“tell the compiler”) which units are subtypes of
which

– In Java, this is specified using “implements”&“extends”

• The compiler generally accepts user information on
type structure at face value

– Full checking is not possible

– Limited checking (e.g. on signatures) errs on the side of
being conservative (may report error even in cases
where legitimate) (e.g. incompatible signatures)

• It is very easy to create a subtype that is not a safe
behavioural subtype of its alleged supertype

Subclasses: A Particularly Common
Type of Fraudulent Subtype

• Misplaced use of subclassing can very easily
create classes that are not subtypes

• When such “fraudulent subclasses” are used
with polymorphism, the code can break easily

• Two prime ways in which code can break

– Implementers deliberately chooses subtype
behaviour that makes it behaviorally incompetible
with the superclass type (supertype)

– Implementers try to make this a behavioral
subtype, but don’t have the necessary guarantees
on superclass implementation(later)

Why Are Fraudulent Subclasses
So Common?

• Subclassing is abused as way to reuse code via
inheritance

– This is a matter of convenience

– Want to avoid redefining a broad set of methods
just to override a few

• Classes are used to group a set of objects where
an “is-a” relationship applies but which are not
behavioural subtypes

– E.g. Square “is a” type of rectangle

Liskov Substitution Principle

• Principle is key to recognizing a legitimate
subtype relationship

• The principle reflects the need to reason safely
about types in the presence of polymorphism

• Statement of Principle (Liskov& Wing)

“Let q(x) be a property provable about objects x of
type T. Then q(y) should be true for objects y of type
S where S is a subtype of T.”

Persistent Metaphor: Service Contracts
• Desire for encapsulation  Clear understanding of

what is guaranteed

• Example: Franchise of Delivery service
– Question: Given parent company guarantees, what

must a franchise offer to be legitimate?

– Precondition: Condition for guarantee to hold
• Parent company: Customer must drop off package by noon

• Ok Franchise: Customer can drop off up to 3pm

• Illegal Franchise: Customer must drop off package by 9am

– Postcondition: Service guarantee if precondition met
• Parent company: Delivery is by 5pm the next day

• Ok Franchise: Delivery is by noon the next day

• Illegal Franchise: Delivery is by next year

Contract Hierarchy

Fedex

Deliver()
 // Precondition: Package available by 12 noon
 // Postcondition: Package delivered by 5pm next day

Fedex Franchise 1

Deliver()
 // Precondition: Package available by 3pm
 // Postcondition: Package delivered
 by noon next day

Fedex Franchise 1

Deliver()
 // Precondition: Package available by 3pm
 // Postcondition: Package delivered
 by noon next day

Liskov Substitution Principle: Intuition

• Consider a situation in which a programmer is creating
code with a variable v whose
– Apparent type is T1

– Actual type is a subtype T2 of T1 (due to polymorphism)

• To avoid risk this code will have to be changed with
every new subtype of T1, it is critical that anything the
programmer can rely upon for a variable of type T1 is
also true for v (despite being of type T2)
– Any type T2 that which departs from the contract of T1 can

break this code

– Bear in mind that other code may treat v as a T2

Parameterized Types
• Via “Generic” classes and interfaces, Java supports

parameterized types

– Here, the definition of one class can be defined with respect
to an arbitrary number of classes that are provided via “Type
parameters”

• Examples: ArrayList<ClassName>, Set<ClassName>

 This is an array list and set that can hold any type of
classes (as specified by “ClassName”)

• A given use of such a “Generic” class will specify a
specific class name for the type parameter

 e.g. Set<Person>, ArrayList<Double>, List<Deer>

• The definition of the generic can restrict the types that
can be used for the type parameter via constraints

Examples of Type Parameterization
in AnyLogic

• Experiment<MainClass> (and other experiment
classes)

• ResourcePool<ResourceUnit>

• NetworkResourcePool<ResourceUnit>

• ActiveObjectArrayList<ActiveObject>

 Typically used (among other things) for the population
in a main class

• ActiveObjectList<ActiveObject>

Defensive Programming

• Naming conventions
• Formatting
• Separate

– Commands (side effects)
– Queries (pure)

• Don't do side effects in e.g. macros
• Mark temporary code (e.g.

scaffolding) using a convention
• Avoid manifest constants
• Consolidate condition checks in

methods or objects (“specification”
pattern)

• Minimize variable lifetime & span
between references

• Use “dog tags” to recognize
overwrites, double deallocation

• Check return values, value legality
• Display results of successive language

processing
• Naming conventions
• Always handle all cases (even illegal)
• Overriding default methods as a rule
• Always put in { } after if
• Beware empty catch blocks
• Use finally blocks
• Don’t reuse temporary variables
• Initialize vars, member data as they

are declared or in constructor
• Use pseudocode programming

process

Other suggestions

• Strive for transparent
code
– Use variable name

conventions
– Consistent formatting

• Strive for higher
abstraction level
– Spot commonality

• Use explicit in and out
parameters

• Use restrictive modifiers
– Const
– Private/protected

• Encapsulation
– Information hiding
– Program to interfaces
– Design by contract

• Use type abstractions
(generics)

• Delegate
• Use enumerations
• Encapsulate repetitive

actions
• Move whole & partial

conditionals to methods

Bad Smells (Many from McConnell, Code
Complete 2.0)

• Duplicate code
• Long routine
• Deep/long if/loops
• Inconsistent interface

abstraction
• Lots of special cases
• Poor cohesion
• Too many parameters
• Single update yields changes

to many places
• Keep on creating ad-hoc

data structures/classes
• Global variables
• Primitive types

• Need to update multiple
inheritance hierarchies

• Subclasses not really
subtypes

• Related items spread
among multiple classes

• Method deals more with
other classes than its own

• Need to know
implementation of other
class

• Unclear name
• Setup & takedown code

around call

Style & Convention

• Naming Conventions

• Commenting

• Metadata (e.g. Javadocs)

• Indentation

• Module Naming

• Construct placement

• Compiler Pragma & Mechanisms

Naming Conventions
• Naming conventions are a powerful tool

• Benefits

– Reduce risk of errors

– Easier understanding of others’ code

– Easier understanding of code in future

– Lower risk of name clashes

– Easier search for desired item (e.g.
method/variable/class

Java Naming Conventions

• Distinguish Typographic & Grammatical

• Packages
– Short lowercase alphabetics (digits rare)

– Start with organization internet domain name (e.g.
ca.usask)

• Classes/interfaces
– First word of each capitalized (TagHasher)

– Avoid all but most common abbreviations

– Generally nouns/noun phrase

– Interfaces sometimes adjective

Java Naming Conventions 2

• Method & Fields

– Same as classes but first letter lowercase

– Const static fields all uppercase, “_” as separ.

– “Action” methods named with verb

– “is” for booleans

– Query: noun/noun phrase or verb w/”get” prefix

– Converters: “toX”, primitiveValue

• Local variables

– Same as members but can be short, context-dependent

Scope Naming Conventions

McConnell, Code Complete 2, 2004

Booleans

• Base name should give clear sense of
condition in question

• Use common convention to indicate boolean

– “f” prefix (e.g. fOpen)

– is prefix (e.g. isOpen)

– “?” suffix (e.g. open? – legal scheme)

• Avoid negation in names (e.g. isNotOpen)

Loop Etiquette

• Make clear what iterating over

• Label index variables with the type of thing
being iterated over

• Avoid overly deep loops
– Confusion

• Control flow: break/continue

• Placement of items in loop

– Consider making internals of loop a separate
method/function

Enumerations
• Enumerations help avoid manifest constants, group

common names

• Good for bitwise operations : Consider values that
will allow this rather than combinatorial names

• If language does not support enumerations, use
carefully named global constants

• Leverage compiler checking

• If no class prefix, consider naming enumeration
values with prefix giving type enumeration

• Make default enumeration value illegal

• Always explicitly handle all values

Example of Enums in AnyLogic

A Closer Look

Use of Enums to Delineate Possible Parameter Values

Use of Enums to Delineate Possible Parameter Values

Generating Random Possible Values

The Associated Code…

Use Modifiers

• Use “const” or “final” (including for
parameters in Java) to prevent side-effects

– Examples

• Prevent modification to this in method

• Prevent assignment to parameter

– Poor man’s option: use “const” in name

• Static can prevent needless memory use

Process Complexity: A Barrier to Quality
System Dynamics Modeling

• Medium+ scale SD projects generate a large # &
diversity & versions of related artefacts

• Careful coordination of these artefacts is important
for ensuring quality insights

• Efficient coordination is important for productivity

• Existing tools offer limited support for such
coordination

• Difficulties limit what can be accomplished

Recall: Process Suggestions

• Use peer reviews to review
– Code

– Design

– Tests

• Perform simple tests to verify functionality

• Keep careful track of experiments

• Use tools for version control & documentation &
referent.integrity

• Do regular builds & system-wide “smoke” tests

• Integrate with others’ work frequently & in small steps

• Use discovery of bugs to find weaknesses in the Q & A
process

Java Modifiers
• “Final”

– Indicates that the value of a field cannot be changed

– Indicates that method cannot be “overridden”

• “Static”: associated with a class (only one variable
associated with the class – no how many objects of
the class are circulating)

• Annotations

• Access modifiers

Access Modifiers

• Public: Visible to (fields: modifiable by) other
classes, in “package” or not

• Private: Not visible to (fields: modifiable by) by any
other classes

• Package (default): Only visible to (fields: modifiable
by) other classes

• Protected: Only visible (fields: modifiable by) in this
class & subclasses

Annotations
• Allows custom indications concerning program

elements e.g.

– Field declarations

– Class declarations

• Uses: Compiler processing/advising, deployment-
time, custom runtime information availability

• Syntax: Indicated by a word (“identifier”) with “@”
sign

– Optional additional information

Custom Annotations Example
• Example:

@interface DataProvenance

 {

 String originalReference();

 String
intermediateDerivationLocation()
default “”;

 String sourcePersonName();

}

 @interface Uncertainty

 { double stdDev() default -1; }

@DataProvenance(originalReferen
ce =“TB Control 2009 Report”,
intermediateDerivationLocation=“
Historical TB Data v12.xls”,

sourcePersonName=“Nate
Osgood”)

@Uncertainty(stdDev=3.5) double
meanYearsBetweenRelapses = 15;

Annotation Retention
• Annotation information can be used at different time

– Different levels of retention of annotation information are
possible, via the Retention meta-annotation & the
RetentionPolicy enum

• Options
– SOURCE: Only preserved during compilation

– CLASS: presenrved in class information, but not
necessarily available at runtime

– RUNTIME: Annotations are preserved in class
representation & are available at runtime for access via
reflection (except for local variables, which are not
preserved)

Annotations with Compiler Support

• @Override (compiler issues error if not found
to be overriding method)

• @Deprecated (compiler warns when used)

• @SuppressWarnings (can instruct compiler to
suppress one or both of 2 common types of
warnings)

Valuable Uses of Annotations
• Documentation

– Authorship information

– Revision information

• Data

– Provenance

– Pedigree

• Capturing intentions

• Consistency with

• Verifying that goal is being met (e.g. that are, in
fact, overriding)

